How can I use a custom UI template with AWS provided Lambda functions in Ground Truth?
I want to use an Amazon SageMaker Ground Truth custom UI template and AWS Lambda functions for a labeling job.
Resolution
Create a custom UI template for the labeling job, as shown in the following example:
-
For semantic segmentation jobs, set the name variable to crowd-semantic-segmentation, as shown in the following example. For bounding box jobs, set the name variable to boundingBox. For a full list of enhanced HTML elements for custom templates, see Crowd HTML elements reference.
<script src="https://assets.crowd.aws/crowd-html-elements.js"></script> <crowd-form> <crowd-semantic-segmentation name="crowd-semantic-segmentation" src="{{ task.input.taskObject | grant_read_access }}" header= "{{ task.input.header }}" labels="{{ task.input.labels | to_json | escape }}"> <full-instructions header= "Segmentation Instructions"> <ol> <li>Read the task carefully and inspect the image.</li> <li>Read the options and review the examples provided to understand more about the labels.</li> <li>Choose the appropriate label that best suits the image.</li> </ol> </full-instructions> <short-instructions> <p>Use the tools to label the requested items in the image</p> </short-instructions> </crowd-semantic-segmentation> </crowd-form> -
Create a JSON file for the labels. Example:
{ "labels": [ { "label": "Chair" }, ... { "label": "Oven" } ] } -
Create an input manifest file for the images. Example:
{"source-ref":"s3://awsdoc-example-bucket/input_manifest/apartment-chair.jpg"} {"source-ref":"s3://awsdoc-example-bucket/input_manifest/apartment-carpet.jpg"} -
Upload the HTML, manifest, and JSON files to Amazon Simple Storage Service (Amazon S3). Example:
import boto3import os bucket = 'awsdoc-example-bucket' prefix = 'GroundTruthCustomUI' boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'customUI.html')).upload_file('customUI.html') boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'input.manifest')).upload_file('input.manifest') boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'testLabels.json')).upload_file('testLabels.json') -
Retrieve the Amazon Resource Names (ARNs) for the pre-processing and annotation consolidation Lambda functions. For example, here are the semantic segmentation ARNs:
arn:aws:lambda:eu-west-1:111122223333:function:PRE-SemanticSegmentation
arn:aws:lambda:eu-west-1:111122223333:function:ACS-SemanticSegmentation -
To create the labeling job, use an AWS SDK, such as boto3:
import boto3 client = boto3.client("sagemaker") client.create_labeling_job( LabelingJobName="SemanticSeg-CustomUI", LabelAttributeName="output-ref", InputConfig={ "DataSource": {"S3DataSource": {"ManifestS3Uri": "INPUT_MANIFEST_IN_S3"}}, "DataAttributes": { "ContentClassifiers": [ "FreeOfPersonallyIdentifiableInformation", ] }, }, OutputConfig={"S3OutputPath": "S3_OUTPUT_PATH"}, RoleArn="IAM_ROLE_ARN", LabelCategoryConfigS3Uri="LABELS_JSON_FILE_IN_S3", StoppingConditions={"MaxPercentageOfInputDatasetLabeled": 100}, HumanTaskConfig={ "WorkteamArn": "WORKTEAM_ARN", "UiConfig": {"UiTemplateS3Uri": "HTML_TEMPLATE_IN_S3"}, "PreHumanTaskLambdaArn": "arn:aws:lambda:eu-west-1:111122223333:function:PRE-SemanticSegmentation", "TaskKeywords": [ "SemanticSegmentation", ], "TaskTitle": "Semantic Segmentation", "TaskDescription": "Draw around the specified labels using the tools", "NumberOfHumanWorkersPerDataObject": 1, "TaskTimeLimitInSeconds": 3600, "TaskAvailabilityLifetimeInSeconds": 1800, "MaxConcurrentTaskCount": 1, "AnnotationConsolidationConfig": { "AnnotationConsolidationLambdaArn": "arn:aws:lambda:eu-west-1:111122223333:function:ACS-SemanticSegmentation" }, }, Tags=[{"Key": "reason", "Value": "CustomUI"}], )
In the previous example, complete these steps:
- Replace S3_OUTPUT_PATH with the S3 output path
- Replace IAM_ROLE_ARN with the role ARN
- Replace WORKTEAM_ARN with the workteam ARN
- Replace INPUT_MANIFEST_IN_S3 with the Input Manifest URI
- Replace LABELS_JSON_IN_S3 with the Labels JSON URI
- Replace HTML_TEMPLATE_IN_S3 with the HTML template URI
Related information
- Argomenti
- Machine Learning & AIStorage
- Lingua
- English
Video correlati

