I want to configure Apache Spark parameters in Amazon EMR.
Short description
To configure Spark applications, use command line arguments such as the spark-submit. Or configure the values in the spark-defaults.conf file to make the changes permanent.
Resolution
Use spark-submit to configure Spark parameters
To load configurations dynamically through the Spark shell and spark-submit command, use one of the following options:
- Command line options, such as --num-executors.
- The --conf flag.
Note: To see the complete options list, run spark-submit--help.
The spark-submit command reads the configuration options from spark-defaults.conf.
In the spark-defaults.conf file, each line includes a key and a value separated by white space.
For more information, see Submitting user applications with spark-submit. For more information on the parameters supported by Spark, see Spark configuration on the Apache Spark website.
Example configuration options:
--class \
--master \
--deploy-mode \
--conf = \
--num-executors \
--executor-memory G \
--driver-memory G \
--executor-cores \
--driver-cores \
--jars \
--packages \
--py-files < Comma-separated list of .zip, .egg, or .py files to place on the PYTHONPATH for Python apps> \
The spark-submit command automatically transfers the application JAR, and any JARs included with the --jars option to the cluster. You must separate URLs supplied after --jars by commas. spark-submit includes the list in the driver and executor class paths, and copies the JARs and files to the working directory for each SparkContext on the executor nodes.
Note: Directory expansion doesn't work with --jars.
Example spark-submit command:
spark-submit \
--deploy-mode cluster \
--class org.apache.spark.examples.SparkPi \
--conf spark.dynamicAllocation.enabled=false \
--master yarn \
--num-executors 4 \
--driver-memory 4G \
--executor-memory 4G \
--executor-cores 1 \
/usr/lib/spark/examples/jars/spark-examples.jar \
10
To pass the memory parameters, use the flag --conf:
spark-submit \
--deploy-mode cluster \
--class org.apache.spark.examples.SparkPi \
--conf spark.dynamicAllocation.enabled=false \
--master yarn \
--conf spark.driver.memory=1G \
--conf spark.executor.memory=1G \
/usr/lib/spark/examples/jars/spark-examples.jar \
10
Use custom Spark parameters to launch spark-shell and pyspark shell
To launch spark-shell or pyspark shell, run the following commands:
spark-shell
spark-shell \
--conf spark.driver.maxResultSize=1G \
--conf spark.driver.memory=1G \
--deploy-mode client \
--conf spark.executor.memory=1G \
--conf spark.executor.heartbeatInterval=10000000s \
--conf spark.network.timeout=10000001s \
--executor-cores 1 \
--num-executors 5 \
--packages org.apache.spark:spark-avro_2.12:3.1.2 \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
pyspark shell
pyspark \
--conf spark.driver.maxResultSize=1G \
--conf spark.driver.memory=1G \
--deploy-mode client \
--conf spark.executor.memory=1G \
--conf spark.executor.heartbeatInterval=10000000s \
--conf spark.network.timeout=10000001s \
--executor-cores 1 \
--num-executors 5 \
--packages org.apache.spark:spark-avro_2.12:3.1.2 \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
Use spark-defaults.conf to configure Spark parameters
To make the configuration changes permanent, append the configuration to the file /etc/spark/conf/spark-defaults.conf. Then, restart the Spark History Server. The following example configures the executor memory and driver memory in spark-defaults.conf. In this example, each line consists of a key and a value separated by white space.
Example
spark.executor.memory 9486M
spark.driver.memory 9486M
The following example configuration configures the Spark driver and executor memory during cluster launch:
[
{
"Classification": "spark-defaults",
"Properties": {
"spark.executor.memory": "9486M",
"spark.driver.memory": "9486M"
}
}
]
Note: On Amazon EMR the spark.yarn.executor.memoryOverhead configuration has a default value of 18.75% however the standard Spark default is 0.1875%. Once you configure your Spark job, monitor its performance and analyze resource utilization to gather insight and to further tune your job parameters.
Related information
AWS open data analytics
Add a Spark step
Modify your cluster on the fly with Amazon EMR reconfiguration