How can I use a custom UI template with AWS provided Lambda functions in Ground Truth?

3 minute read
0

I want to use an Amazon SageMaker Ground Truth custom UI template and AWS Lambda functions for a labeling job.

Resolution

Create a custom UI template for the labeling job, as shown in the following example:

  1. For semantic segmentation jobs, set the name variable to crowd-semantic-segmentation, as shown in the following example. For bounding box jobs, set the name variable to boundingBox. For a full list of enhanced HTML elements for custom templates, see Crowd HTML elements reference.

    <script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
    <crowd-form>
        <crowd-semantic-segmentation name="crowd-semantic-segmentation" src="{{ task.input.taskObject | grant_read_access }}" header= "{{ task.input.header }}" labels="{{ task.input.labels | to_json | escape }}">
    
            <full-instructions header= "Segmentation Instructions">
                <ol>
                    <li>Read the task carefully and inspect the image.</li>
                    <li>Read the options and review the examples provided to understand more about the labels.</li>
                    <li>Choose the appropriate label that best suits the image.</li>
                </ol>
            </full-instructions>
    
            <short-instructions>
                <p>Use the tools to label the requested items in the image</p>
            </short-instructions>
        </crowd-semantic-segmentation>
    </crowd-form>
  2. Create a JSON file for the labels. Example:

    {
      "labels": [
        {
          "label": "Chair"
        },
      ...
        {
          "label": "Oven"
          }
       ]
    }
  3. Create an input manifest file for the images. Example:

    {"source-ref":"s3://awsdoc-example-bucket/input_manifest/apartment-chair.jpg"}
    {"source-ref":"s3://awsdoc-example-bucket/input_manifest/apartment-carpet.jpg"}
  4. Upload the HTML, manifest, and JSON files to Amazon Simple Storage Service (Amazon S3). Example:

    import boto3import os
    
    bucket = 'awsdoc-example-bucket'
    prefix = 'GroundTruthCustomUI'
    
    boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'customUI.html')).upload_file('customUI.html')
    boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'input.manifest')).upload_file('input.manifest')
    boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'testLabels.json')).upload_file('testLabels.json')
  5. Retrieve the Amazon Resource Names (ARNs) for the pre-processing and annotation consolidation Lambda functions. For example, here are the semantic segmentation ARNs:
    arn:aws:lambda:eu-west-1:111122223333:function:PRE-SemanticSegmentation
    arn:aws:lambda:eu-west-1:111122223333:function:ACS-SemanticSegmentation

  6. To create the labeling job, use an AWS SDK, such as boto3:

    import boto3
    
    client = boto3.client("sagemaker")
    client.create_labeling_job(
        LabelingJobName="SemanticSeg-CustomUI",
        LabelAttributeName="output-ref",
        InputConfig={
            "DataSource": {"S3DataSource": {"ManifestS3Uri": "INPUT_MANIFEST_IN_S3"}},
            "DataAttributes": {
                "ContentClassifiers": [
                    "FreeOfPersonallyIdentifiableInformation",
                ]
            },
        },
        OutputConfig={"S3OutputPath": "S3_OUTPUT_PATH"},
        RoleArn="IAM_ROLE_ARN",
        LabelCategoryConfigS3Uri="LABELS_JSON_FILE_IN_S3",
        StoppingConditions={"MaxPercentageOfInputDatasetLabeled": 100},
        HumanTaskConfig={
            "WorkteamArn": "WORKTEAM_ARN",
            "UiConfig": {"UiTemplateS3Uri": "HTML_TEMPLATE_IN_S3"},
            "PreHumanTaskLambdaArn": "arn:aws:lambda:eu-west-1:111122223333:function:PRE-SemanticSegmentation",
            "TaskKeywords": [
                "SemanticSegmentation",
            ],
            "TaskTitle": "Semantic Segmentation",
            "TaskDescription": "Draw around the specified labels using the tools",
            "NumberOfHumanWorkersPerDataObject": 1,
            "TaskTimeLimitInSeconds": 3600,
            "TaskAvailabilityLifetimeInSeconds": 1800,
            "MaxConcurrentTaskCount": 1,
            "AnnotationConsolidationConfig": {
                "AnnotationConsolidationLambdaArn": "arn:aws:lambda:eu-west-1:111122223333:function:ACS-SemanticSegmentation"
            },
        },
        Tags=[{"Key": "reason", "Value": "CustomUI"}],
    )

In the previous example, complete these steps:

  • Replace S3_OUTPUT_PATH with the S3 output path
  • Replace IAM_ROLE_ARN with the role ARN
  • Replace WORKTEAM_ARN with the workteam ARN
  • Replace INPUT_MANIFEST_IN_S3 with the Input Manifest URI
  • Replace LABELS_JSON_IN_S3 with the Labels JSON URI
  • Replace HTML_TEMPLATE_IN_S3 with the HTML template URI

Related information

Semantic segmentation algorithm

AWS OFFICIAL
AWS OFFICIALUpdated 5 months ago